Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae.

نویسندگان

  • Marc Linka
  • Aziz Jamai
  • Andreas P M Weber
چکیده

In chloroplasts of green plants and algae, CO(2) is assimilated into triose-phosphates (TPs); a large part of these TPs is exported to the cytosol by a TP/phosphate translocator (TPT), whereas some is stored in the plastid as starch. Plastidial phosphate translocators have evolved from transport proteins of the host endomembrane system shortly after the origin of chloroplasts by endosymbiosis. The red microalga Galdieria sulphuraria shares three conserved putative orthologous transport proteins with the distantly related seed plants and green algae. However, red algae, in contrast to green plants, store starch in their cytosol, not inside plastids. Hence, due to the lack of a plastidic starch pool, a larger share of recently assimilated CO(2) needs to be exported to the cytosol. We thus hypothesized that red algal transporters have distinct substrate specificity in comparison to their green orthologs. This hypothesis was tested by expression of the red algal genes in yeast (Saccharomyces cerevisiae) and assessment of their substrate specificities and kinetic constants. Indeed, two of the three red algal phosphate translocator candidate orthologs have clearly distinct substrate specificities when compared to their green homologs. GsTPT (for G. sulphuraria TPT) displays very narrow substrate specificity and high affinity; in contrast to green plant TPTs, 3-phosphoglyceric acid is poorly transported and thus not able to serve as a TP/3-phosphoglyceric acid redox shuttle in vivo. Apparently, the specific features of red algal primary carbon metabolism promoted the evolution of a highly efficient export system with high affinities for its substrates. The low-affinity TPT of plants maintains TP levels sufficient for starch biosynthesis inside of chloroplasts, whereas the red algal TPT is optimized for efficient export of TP from the chloroplast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two types of ftsZ genes isolated from the unicellular primitive red alga Galdieria sulphuraria.

FtsZ plays a crucial role in bacterial cell division, and may be involved in plastid division in eukaryotes. To investigate the evolution of the dividing apparatus from prokaryotes to eukaryotes, the ftsZ genes were isolated from the unicellular primitive red alga Galdieria sulphuraria. Two ftsZ genes (GsftsZ1 and GsftsZ2) were isolated. This suggests that duplication and divergence of the ftsZ...

متن کامل

Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs

Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is curr...

متن کامل

Extreme Features of the Galdieria sulphuraria Organellar Genomes: A Consequence of Polyextremophily?

Nuclear genome sequencing from extremophilic eukaryotes has revealed clues about the mechanisms of adaptation to extreme environments, but the functional consequences of extremophily on organellar genomes are unknown. To address this issue, we assembled the mitochondrial and plastid genomes from a polyextremophilic red alga, Galdieria sulphuraria strain 074 W, and performed a comparative genomi...

متن کامل

Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria.

Photosystem I-light harvesting complex I (PSI-LHCI) was isolated from the thermoacidophilic red alga Galdieria sulphuraria, and its structure, composition, and light-harvesting function were characterized by electron microscopy, mass spectrometry, and ultrafast optical spectroscopy. The results show that Galdieria PSI is a monomer with core features similar to those of PSI from green algae, but...

متن کامل

Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria.

The unicellular acidophilic red alga Galdieria sulphuraria is a facultative heterotroph with a complex uptake system for sugars and polyols, consisting of at least 14 transporters. Upon transfer to heterotrophic conditions, these transporters were induced simultaneously. Once induced, transporters for common hexoses and pentoses are apparently not down-regulated under heterotrophic conditions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 148 3  شماره 

صفحات  -

تاریخ انتشار 2008